Elastic Analysis of Rotating Thick Cylindrical Pressure Vessels under Non-Uniform Pressure: Linear and Non-Linear Thickness

نویسندگان

  • Mohammad Zamani Nejad
  • Mehdi Jabbari
  • Mehdi Ghannad
چکیده

Using multi-layers method (MLM), a semi-analytical solution have been derived for determination of displacements and stresses in a thick cylindrical shell with variable thickness under non-uniform pressure. Three different profiles (convex, linear and concave) are considered for the variable thickness cylinder. Given the existence of shear stress in the thick cylindrical shell due to thickness and pressure changes along the axial direction, the governing equations are obtained based on first-order shear deformation theory (FSDT). These equations are in the form of a set of general differential equations with variable coefficients. Given that the thick cylinder with variable thickness is divided into n homogenous disks, n sets of differential equations with constant coefficients are obtained. The solution of this set of equations, applying the boundary conditions and continuity conditions between the layers, yields displacements and stresses. Finally, some numerical results are presented to study the effects of applied pressure, thickness profile type, and angular velocity on the mechanical behavior of the cylindrical shell.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear analysis of radially functionally graded hyperelastic cylindrical shells with axially-varying thickness and non-uniform pressure loads based on perturbation theory

In this study, nonlinear analysis for thick cylindrical pressure vessels with arbitrary variable thickness made of hyperelastic functionally graded material properties in nearly incompressible state and clamped boundary conditions under non-uniform pressure loading is presented. Thickness and pressure of the shell are considered in axial direction by arbitrary nonlinear profiles. The FG materia...

متن کامل

Transient thermoelastic analysis of FGM rotating thick cylindrical pressure vessels under arbitrary boundary and initial conditions

Assuming arbitrary boundary and initial conditions, a transient thermo-elastic analysis of a rotating thick cylindrical pressure vessel made of functionally graded material (FGM) subjected to axisymmetric mechanical and transient thermal loads is presented. Time-dependent thermal and mechanical boundary conditions are assumed to act on the boundaries of the vessel. Material properties of the ve...

متن کامل

Time-Dependent Hygro-Thermal Creep Analysis of Pressurized FGM Rotating Thick Cylindrical Shells Subjected to Uniform Magnetic Field

Time-dependent creep analysis is presented for the calculation of stresses and displacements of axisymmetric thick-walled cylindrical pressure vessels made of functionally graded material (FGM). For the purpose of time-dependent stress analysis in an FGM pressure vessel, material creep behavior and the solutions of the stresses at a time equal to zero (i.e. the initial stress state) are needed....

متن کامل

Elastic analysis of functionally graded rotating thick cylindrical pressure vessels with exponentially-varying properties using power series method of Frobenius

Based on the Frobenius series method, stresses analysis of the functionally graded rotating thick cylindrical pressure vessels (FGRTCPV) are examined. The vessel is considered in both plane stress and plane strain conditions. All of the cylindrical shell properties except the Poisson ratio are considered exponential function along the radial direction. The governing Navier equation for this pro...

متن کامل

Effect of Material Gradient on Stresses of FGM Rotating Thick-Walled Cylindrical Pressure Vessel with Longitudinal Variation of Properties under Non-uniform Internal and External Pressure

The present paper provides a semi-analytical solution to obtain the displacements and stresses in a functionally graded material (FGM) rotating thick cylindrical shell with clamped ends under non-uniform pressure. Material properties of cylinder are assumed to change along the axial direction according to a power law form. It is also assumed that the Poisson’s ratio is constant. Given the exist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015